Abstract

Abstract The ignition threshold of an energetic material (EM) quantifies the macroscopic conditions for the onset of self-sustaining chemical reactions. The threshold is an important theoretical and practical measure of material attributes that relate to safety and reliability. Historically, the thresholds are measured experimentally. Here, we present a new Lagrangian computational framework for establishing the probabilistic ignition thresholds of heterogeneous EM out of the evolutions of coupled mechanical-thermal-chemical processes using mesoscale simulations. The simulations explicitly account for microstructural heterogeneities, constituent properties, and interfacial processes and capture processes responsible for the development of material damage and the formation of hotspots in which chemical reactions initiate. The specific mechanisms tracked include viscoelasticity, viscoplasticity, fracture, post-fracture contact, frictional heating, heat conduction, reactive chemical heating, gaseous product generation, and convective heat transfer. To determine the ignition threshold, the minimum macroscopic loading required to achieve self-sustaining chemical reactions with a rate of reactive heat generation exceeding the rate of heat loss due to conduction and other dissipative mechanisms is determined. Probabilistic quantification of the processes and the thresholds are obtained via the use of statistically equivalent microstructure sample sets (SEMSS). The predictions are in agreement with available experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.