Abstract

Gaussian process (GP) model is a Bayesian kernel-based learning machine. In this paper, we propose a GP model with a various mixed kernel for pricing and hedging ELWs (equity linked warrants) traded at KRX with predictive distribution. We experiment with daily market data relevant to KOSPI200 call ELWs from March 2006 to July 2006, comparing the performance of the GP model with those of various neural network (NN) models to show its effectiveness. The applied NN models contain early stopping, regularized NN, and bagging. The proposed GP model shows that its forecast capability outperforms those of the three NN models in terms of both pricing and hedging errors, thereby generating consistent results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.