Abstract

This paper presents an analytical model for predicting the short and long-term prestress losses in reinforced concrete (RC) beams strengthened with prestressed carbon fiber reinforced polymer (CFRP) sheets/plates. The long-term prestress loss model is developed by treating the strengthened beam as two sub-elements: an RC beam and a prestressed CFRP sheet/plate, connected through an adhesive bonding layer. Through force equilibrium and displacement compatibility of the two sub-elements, the influences of concrete shrinkage, concrete creep as well the interlayer slip between the RC beam and the CFRP sheet/plate on the prestress losses of CFRP are modeled using an incremental model. For a post-tensioned system with strong end anchorages, closed-form solutions for the prestress losses due to creep and shrinkage of concrete are obtained. The reliability of the proposed analytical model is validated through comparisons with previous test results reported by the authors and others research groups. The maximum difference between the experimentally observed values and the predicted values for the long-term prestress losses was found to be only 2.2% of the initial prestress of the CFRP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.