Abstract

Venturi, as the primary flow measurement sensor, is widely used in various industrial fields of oil and natural gas. Pressure drop of the Venturi is a crucial factor in the process design of exploitation and transportation of natural gas. Based on the drift-flux model and boundary layer theory, a pressure drop prediction model is established. Except for divergent section, a uniform void fraction model is established basing on drift-flux model. The thickness of boundary layer grows rapidly due to the existence of adverse pressure gradient in the divergent section, which results in an increase of the irrecoverable pressure drop. Considering the influence of slip between gas and liquid, weight coefficient is used to adjust the proportion of displacement thickness in the cross section of the Venturi. Compared to experiment, the theoretical model is applied to stratified wavy flow and annular mist flow. For different diameter, the relative deviations of experiment points are within ±15%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.