Abstract
The smart method of genetic programming (GP) is used to predict the operating pressure drop (ΔPs) and the minimum spouting velocity ums for conical spouted beds (CSBs) equipped with nonporous draft tubes. Accordingly, six dimensionless variables have been taken as model inputs, including crucial parameters associated with the bed and tube geometric and operating conditions. Two general correlations comprising almost all constitutive and operating variables have been derived for the first time by the GP approach. Both ΔPs and ums values predicted by the GP technique are in a fair agreement with the values corresponding to the experiments, with average absolute relative errors (AARE) of 18.9 and 19.9 %, respectively. The results of the proposed correlations show that the GP method is a powerful tool to make reasonable estimates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.