Abstract
BackgroundUnderstanding the geographical distribution of a species is a key component of studying its ecology, evolution, and conservation. Although Schlegel’s Japanese gecko (Gekko japonicus) is widely distributed in Northeast Asia, its distribution has not been studied in detail. We predicted the present and future distribution of G. japonicus across China, Japan, and Korea based on 19 climatic and 5 environmental variables using the maximum entropy (MaxEnt) species distribution model.ResultsPresent time major suitable habitats for G. japonicus, having greater than 0.55 probability of presence (threshold based on the average predicted probability of the presence records), are located at coastal and inland cities of China; western, southern, and northern coasts of Kyushu and Honshu in Japan; and southern coastal cities of Korea. Japan contained 69.3% of the suitable habitats, followed by China (27.1%) and Korea (4.2%). Temperature seasonality (66.5% of permutation importance) was the most important predictor of the distribution. Future distributions according to two climate change scenarios predicted that by 2070, and overall suitable habitats would decrease compared to the present habitats by 18.4% (scenario RCP 4.5) and 10.4% (scenario RCP 8.5). In contrast to these overall trends, range expansions are expected in inland areas of China and southern parts of Korea.ConclusionsSuitable habitats predicted for G. japonicus are currently located in coastal cities of Japan, China, and Korea, as well as in isolated patches of inland China. Due to climate change, suitable habitats are expected to shrink along coastlines, particularly at the coastal-edge of climate change zones. Overall, our results provide essential distribution range information for future ecological studies of G. japonicus across its distribution range.
Highlights
Understanding the geographical distribution of a species is a key component of studying its ecology, evolution, and conservation
In the analysis of the future potential distribution according to the climate change scenarios, we evaluated the effects of climate change on the distribution of G. japonicus, analyzing the changes in the major suitable habitat areas between current and future (2070) timeframes
Most major suitable habitats were located in urban areas such as coastal (Shanghai and Ningbo) and inland cities (Chongqing, Yingtan, and Quzhou) in China; western, southern, and northern coastal cities (Fukuoka, Osaka, Nagoya, and Kyoto) of Kyushu and Honshu in Japan; and at southeastern coastal cities (Busan and Changwon) in Korea (Fig. 2a, b)
Summary
Understanding the geographical distribution of a species is a key component of studying its ecology, evolution, and conservation. We predicted the present and future distribution of G. japonicus across China, Japan, and Korea based on 19 climatic and 5 environmental variables using the maximum entropy (MaxEnt) species distribution model. In recent years, determining the explicit distribution range of a species and predicting future changes has become more important because of rapid population declines due to habitat destruction and alteration, climate change, and introduced. Recent concerns regarding area of origin and gentic relationships among populations are growing due to range expansions of G. japonicus in Korea and Japan, possibly due to anthropogenic factors or climate change (Toda et al 2003; Kim et al 2017). G. japonicus is distributed widely in Northeast Asia and artificial introductions have been suggested in Korea and Japan (Lee et al 2004; Toda and Yoshida 2005), its distribution range is not fully resolved
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.