Abstract
Knowledge of soil pore-water pressure variation due to climatic changes is fundamental for slope stability analysis and other problems associated with slope stability issues. This study is an application of Radial Basis Function Neural Network (RBFNN) modeling for prediction of soil pore-water pressure responses to rainfall. Time series data of rainfall and pore-water pressures were used to develop the RBFNN prediction model. The number of input neurons was decided by the analysis of auto-correlation between pore-water pressure data and cross-correlation between rainfall and pore-water pressure data. Establishing the number of hidden neurons by method of self learning network architecture determination and also by trial and error method was examined. A number of statistical measures were used for the evaluation of the network performance. Prediction results with a network architecture of 8–10–1 and a spread σ=3.0 produced the lowest error measures (MSE, RMSE, MAE), highest coefficient of efficiency (CE) and coefficient of determination (R2). The results suggest that RBFNN is suitable for mapping the non-linear, complex behavior of pore-water pressure responses to rainfall. Guidelines for choosing the number of input neurons and eliminating possibility of model over-fitting are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.