Abstract

Air quality has emerged as a critical concern in recent years, with the concentration of PM2.5 recognized as a vital index for assessing it. The accuracy of predicting PM2.5 concentrations holds significant value for effective air quality monitoring and management. In response to this, a combined model comprising CEEMDAN-RLMD-BiLSTM-LEC has been introduced, analyzed, and compared against various other models. The combined decomposition method effectively underlines the fundamental characteristics of the data compared to individual decomposition techniques. Additionally, local error correction (LEC) efficiently addresses the issue of prediction errors induced by excessive disturbances. The empirical results of nine steps indicate that the combined CEEMDAN-RLMD-BiLSTM-LEC model outperforms single prediction models such as RLMD and CEEMDAN, reducing MAE, RMSE, and SAMPE by 36.16%, 28.63%, 45.27% and 16.31%, 6.15%, 37.76%, respectively. Moreover, the inclusion of LEC in the model further diminishes MAE, RMSE, and SMAPE by 20.69%, 7.15%, and 44.65%, respectively, exhibiting commendable performance in generalization experiments. These findings demonstrate that the combined CEEMDAN-RLMD-BiLSTM-LEC model offers high predictive accuracy and robustness, effectively handling noisy data predictions and severe local variations. With its wide applicability, this model emerges as a potent tool for addressing various related challenges in the field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.