Abstract
Using genetic algorithm (GA) and backpropagation neural network (BPNN), computer models of plasma processes were constructed. The GA was applied to optimize five training factors simultaneously. The presented technique was evaluated with plasma etch data, characterized by a statistical experimental design. The etching was conducted in an inductively coupled plasma etch system. The etch outputs to model include aluminum (Al) etch rate, Al selectivity, silica profile angle, and DC bias. GA-BPNN models demonstrated improved predictions of more than 20% for all etch outputs but the DC bias. This indicates that a simultaneous optimization of training factors is more effective in improving the prediction performance of BPNN model than a sequential optimization of individual training factor. Compared to GA-BPNN models constructed in a previous training set, the presented models also yielded a much improved prediction of more than 35% for all etch outputs. The proven improvement indicates that the presented training set is more effective to improve GA-BPNN models.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.