Abstract
Messenger RNA polyadenylation is one of the essential processing steps during eukaryotic gene expression. The site of polyadenylation [poly(A) site] marks the end of a transcript, which is also the end of a gene in most cases. A computation program that is able to recognize poly(A) sites would not only be useful for genome annotation in finding genes ends, but also for predicting alternative poly(A) sites. PASS [Poly(A) Site Sleuth] and PAC [Poly(A) site Classifier] were developed to predict poly(A) sites in plants. PASS was built based on the Generalized Hidden Markov Model (GHMM), which consists of four functional modules: input model, poly(A) site recognition module, graphic process module, and output module. PAC is a classification model, integrating several features that define the poly(A) sites including K-gram pattern, Z-curve, position-specific scoring matrix, and first-order inhomogeneous Markov sub-model. PAC can be used to predict poly(A) sites from species whose polyadenylation profile is unknown. The result of PASS and PAC is an output of a few files with one of them containing the score or probability of being a poly(A) site for each position of a given sequence. While the models were built mostly based on poly(A) profile data from Arabidopsis, it is also functional in other higher plants since their profiles are quite similar.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.