Abstract

A diffusion/transformation coupled model has been developed which combines finite difference (FD) model with a phenomenological model. The composition of the different iron-nitrogen(Fe-N) hardening phase can be regard as a function of nitriding time and nitrogen concentration. The diffusion model and transformation model are linked by the limiting nitrogen solubilities and the effective diffusion coefficients. The effect of alloy elements (Cr, Mo, Mn, V, Ni etc.) is considered by introducing an alloy coefficient for limiting nitrogen solubilities and diffusion coefficient. The diffusion/transformation model can predict nitrogen concentration, phase composition and hardness distribution. The model is employed to simulate the nitriding process of SCr420H low-alloy steels. The simulated nitrogen concentration and hardness profiles are consistent with the measured ones. In addition, the predicted depth distributions of iron-nitrogen phase agree well with the available experimental results. Therefore, the comparison shows the reliability of the coupled model. It can be applied to improve the nitriding process parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.