Abstract
BackgroundTo prevent persistent post-surgery pain, early identification of patients at high risk is a clinical need. Supervised machine-learning techniques were used to test how accurately the patients’ performance in a preoperatively performed tonic cold pain test could predict persistent post-surgery pain. MethodsWe analysed 763 patients from a cohort of 900 women who were treated for breast cancer, of whom 61 patients had developed signs of persistent pain during three yr of follow-up. Preoperatively, all patients underwent a cold pain test (immersion of the hand into a water bath at 2–4 °C). The patients rated the pain intensity using a numerical ratings scale (NRS) from 0 to 10. Supervised machine-learning techniques were used to construct a classifier that could predict patients at risk of persistent pain. ResultsWhether or not a patient rated the pain intensity at NRS=10 within less than 45 s during the cold water immersion test provided a negative predictive value of 94.4% to assign a patient to the “persistent pain” group. If NRS=10 was never reached during the cold test, the predictive value for not developing persistent pain was almost 97%. However, a low negative predictive value of 10% implied a high false positive rate. ConclusionsResults provide a robust exclusion of persistent pain in women with an accuracy of 94.4%. Moreover, results provide further support for the hypothesis that the endogenous pain inhibitory system may play an important role in the process of pain becoming persistent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.