Abstract

Oxygen vacancy ordering in perovskite-type transition-metal oxides plays an important role in the emergence of exotic electronic properties, as typified by superconducting cuprates. In this study, we predict the stability of oxygen-deficient perovskite structures in ACuO$_{3-x}$ (A $=$ Ca, Sr, Ba, Sc, Y, La) by density functional theory calculation. We introduce a combination of the cluster expansion method, Gaussian process, and Bayesian optimization to find stable oxygen-deficient structures among a considerable number of candidates. Our calculations not only reproduce the reported structures but suggest the presence of several unknown oxygen-deficient perovskite structures, some of which are stabilized at high pressures. This work demonstrates the great applicability of the present computational procedure for the elucidation of the structural stability of strongly correlated oxides with a large tolerance to oxygen deficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.