Abstract

A numerical-analytical method for estimating steady-state periodic behavior of nonlinear rotordynamic systems is presented. Based on a finite element formulation in the time domain, this method transforms the nonlinear differential equations governing the motion of large rotor dynamic systems with nonlinear supports into a set of nonlinear algebraic equations with unknown temporal nodal displacements. A procedure is proposed to reduce the resulting problem to solving nonlinear algebraic equations in terms of the coordinates associated with the nonlinear supports only. The result is a simple and efficient approach for predicting all possible fundamental and sub-harmonic responses. Stability of the periodic response is readily determined by a direct use of Floquet’s theory. The feasibility and advantages of the proposed method are illustrated with two examples of rotor-bearing systems of deadband supports and squeeze film dampers, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.