Abstract

Performance maps are useful for evaluating potential engine designs because they encompass the full range of engine speeds and loads encountered in a normal driving cycle; however, these maps are time-consuming and expensive to construct experimentally. An efficient method is presented for constructing performance maps for homogeneous-charge compression-ignition (HCCI) engines by determining the optimum operating conditions (equivalence ratio, valve timing, etc.) and associated performance characteristics (fuel consumption, peak cylinder pressure, etc.). The numerical procedure used to construct the performance maps combined engine cycle simulations to model the gas exchange process and perfectly stirred reactor (PSR) simulations to model the compression, combustion, and expansion processes. A fast numerical solver was employed to exploit sparsity in the PSR model equations and allowed the use of very detailed kinetic mechanisms for primary reference fuel and n-heptane. A major limitation of HCCI engines is that they are limited to low load operation because of engine “knocking” at higher loads. A fundamental criterion is presented for predicting the HCCI knock limit and the corresponding upper bound on engine load. This modeling strategy is first used to simulate a baseline engine that has been tested experimentally. Subsequently, several other cases are described which investigate the influence of compression ratio, fuel, and supercharging on HCCI performance. It is observed that acceptably high loads (11 bar brake mean effective pressure) can be achieved without knocking using an HCCI engine with a relatively low compression ratio, low-octane fuel, and moderate boost pressure. For the cases investigated, knocking occurred for equivalence ratios greater than about 0.6, and the fundamental origin of this limit is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call