Abstract

Long term degradation of solid oxide fuel cells (SOFCs) is one of the biggest impediments to commercialization. Physics based models which can predict long term degradation can be crucial time and money saving tools. At the cell level, one of the primary modes of degradation comes from grain coarsening and the resulting changes in microstructure properties. In this study, a multi-physics model of a single fuel cell is presented which aims to predict performance loss as a function of time and temperature caused by coarsening in the electrodes of an LSM-YSZ/YSZ/Ni-YSZ SOFC. Microstructural properties are updated as a function of time from their initial values using functional relations derived from data obtained experimentally and from phase field models. Performance change over time predicted by the model is compared to experimental data and a study is performed on the effect temperature has on the degradation rate due to coarsening.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.