Abstract
BackgroundIon mobility-mass spectrometry (IMMS), an analytical technique which combines the features of ion mobility spectrometry (IMS) and mass spectrometry (MS), can rapidly separates ions on a millisecond time-scale. IMMS becomes a powerful tool to analyzing complex mixtures, especially for the analysis of peptides in proteomics. The high-throughput nature of this technique provides a challenge for the identification of peptides in complex biological samples. As an important parameter, peptide drift time can be used for enhancing downstream data analysis in IMMS-based proteomics.ResultsIn this paper, a model is presented based on least square support vectors regression (LS-SVR) method to predict peptide ion drift time in IMMS from the sequence-based features of peptide. Four descriptors were extracted from peptide sequence to represent peptide ions by a 34-component vector. The parameters of LS-SVR were selected by a grid searching strategy, and a 10-fold cross-validation approach was employed for the model training and testing. Our proposed method was tested on three datasets with different charge states. The high prediction performance achieve demonstrate the effectiveness and efficiency of the prediction model.ConclusionsOur proposed LS-SVR model can predict peptide drift time from sequence information in relative high prediction accuracy by a test on a dataset of 595 peptides. This work can enhance the confidence of protein identification by combining with current protein searching techniques.
Highlights
Ion mobility-mass spectrometry (IMMS), an analytical technique which combines the features of ion mobility spectrometry (IMS) and mass spectrometry (MS), can rapidly separates ions on a millisecond time-scale
In this work, all the raw data generated from the IMMS were processed using MassLynx V4.1, an instrument control software, to obtain the drift time for each peptide ion peak
To enhance the confidence of peptide identification, a least square support vectors regression (LS-support vector regression (SVR)) model was developed in this study to predict peptide ion drift time for IMMS measurements
Summary
Ion mobility-mass spectrometry (IMMS), an analytical technique which combines the features of ion mobility spectrometry (IMS) and mass spectrometry (MS), can rapidly separates ions on a millisecond time-scale. A typical proteomics experimental setup using IMMS consists of five components: sample introduction, compound ionization, ion mobility separation, mass separation as well as peptide and protein ion detection [10]. Peptide ion separation can be enhanced by changing different gases, altering electric field strengths, and adopting non-linear electric field gradients, by which peptide identification can be facilitated to achieve high confidence [12]. Even though these efforts improve the separation capability of IMMS, they are still timeconsuming, and it is difficult to reproduce under different experimental conditions
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.