Abstract

The mechanical behaviour of natural, unfilled rock joints is influenced by the interaction between surface roughness and matedness of the contact surfaces. In the field, natural rock joints normally exhibit a mismatch between the contact surfaces, mainly due to different geological processes such as weathering or deformations. Various attempts have been made to estimate how matedness of rock joints influences their peak shear strength. However, the proposed methodologies imply certain difficulties since they are intended to estimate the matedness of rock joints based mainly on visual inspection, and by relating an initial shear displacement to the length of the analysed sample or by relating the opening of saw-tooth and two-dimensional joint profiles with the degree of interlocking. Therefore, a tested peak shear strength criterion for natural, unfilled rock joints that realistically accounts for the influence of matedness on their peak shear strength is still lacking. This paper presents a methodology where objective measurements of the average aperture of natural, unfilled rock joints are used to estimate their matedness as a step in the prediction of the peak shear strength. This measured average aperture is based on high-resolution optical scanning of the surface roughness. The proposed relationship between measured average aperture and matedness of natural rock joints has been included in a further developed peak shear strength criterion. The verification against ten natural rock joint samples of coarse-grained granite showed that the revised criterion can predict the peak shear strength considering rock joint matedness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.