Abstract

Traditionally, column performance in liquid chromatography has been studied using information from the elution of probe compounds at different flow rates through van Deemter plots, which relate the column plate height to the linear mobile phase velocity. A more recent approach to characterize columns is the representation of the peak widths (or the right and left peak half-widths) for a set of compounds versus their retention times, which, for isocratic elution, give rise to almost linear plots. In previous work, these plots have been shown to facilitate the prediction of peak profiles (width and asymmetry) with optimization purposes. In this work, a detailed study on the dependence of the peak widths (or half-widths) on the flow rate is reported. A new approach to quantify the deterioration of column performance for slow and fast flow rates and to characterize chromatographic columns is proposed. The approach makes use of the width (or half-widths) for a set of compounds with similar interaction kinetics and does not require knowledge of the extra-column contributions to the total variance. The chromatographic data of two sets of compounds of different natures (sulfonamides and β-blockers), eluted from Spherisorb and Chromolith columns with acetonitrile-water mixtures, are used to illustrate the approach.

Highlights

  • Band broadening in liquid chromatography depends on several processes that take place inside the column: the multiple pathways that a solute can travel through the column packing, molecular diffusion and convection in the mobile phase, slow mass transfer kinetics between the stationary and mobile phases, besides extra-column effects [1,2]

  • The study of column performance can be enriched by evaluating the dependence on the flow rate of the column peak capacity (Pc), which is the maximal number of adjacent peaks located at exactly the right distance to yield enough resolution in a certain time window

  • The peak half-widths or widths allow the characterization of chromatographic columns without the need of measuring the extra-column contributions, which is a source of error in the calculation of the theoretical plate height, especially for compounds with low retention

Read more

Summary

Introduction

Band broadening in liquid chromatography depends on several processes that take place inside the column: the multiple pathways that a solute can travel through the column packing, molecular diffusion and convection in the mobile phase, slow mass transfer kinetics between the stationary and mobile phases, besides extra-column effects [1,2]. Column characterization in liquid chromatography is performed through the elution of probe compounds at different flow rates by representing van Deemter plots [2,20], which relate H for a given solute, column and mobile phase composition to the linear mobile phase velocity This approach operates with two peak parameters (retention and variance) for the intra- and extra-column effects, which could lead to data affected by significant uncertainty due to the propagation of random errors. An alternative approach is proposed based on the dependence of the half-widths (or widths) on the flow rate, which increases the reliability of the data, since the experimental peak profile parameters of several compounds and/or conditions are used, and there is no need to measure the extra-column contribution to the retention. The chromatographic data of two sets of compounds of different natures, sulfonamides and β-blockers, isocratically eluted from Spherisorb and Chromolith columns with acetonitrile-water mixtures, are used to illustrate the approach

Reagents and Columns
Apparatus and Measurement of Peak Parameters
Prediction of Retention Time and Peak Profile at Varying Flow Rates
Characterization of the Column Performance Based on the Peak Half-Widths
Approach I
Approach II
Approach III
Characterization of the Spherisorb and Chromolith Columns
Optimal Flow Rate
Peak Capacity
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call