Abstract

The existing heart failure risk prediction models are developed based on machine learning predictors. The objective of this study is to identify the key risk factors that affect the survival time of heart patients and to develop a heart failure survival prediction model using the identified risk factors. A cox proportional hazard regression method is applied to generate the proposed heart failure survival model. We used the dataset from the University of California Irvine (UCI) clinical heart failure data repository. To develop the model we have used multiple risk factors such as age, anemia, creatinine phosphokinase, diabetes history, ejection fraction, presence of high blood pressure, platelet count, serum creatinine, sex, and smoking history. Among the risk factors, high blood pressure is identified as one of the novel risk factors for heart failure. We have validated the performance of the model via statistical and empirical validation. The experimental result shows that the proposed model achieved good discrimination and calibration ability with a C-index (receiver operating characteristic (ROC) of being 0.74 and a log-likelihood ratio of 81.95 using 11 degrees of freedom on the validation dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.