Abstract
Next Generation Sequencing technologies make it possible to detect rare genetic variants in individual patients. Currently, more than a dozen software and web services have been created to predict the pathogenicity of variants related with changing of amino acid residues. Despite considerable efforts in this area, at the moment there is no ideal method to classify pathogenic and harmless variants, and the assessment of the pathogenicity is often contradictory. In this article, we propose to use peptides structural formulas of proteins as an amino acid residues substitutions description, rather than a single-letter code. This allowed us to investigate the effectiveness of chemoinformatics approach to assess the pathogenicity of variants associated with amino acid substitutions. The structure-activity relationships analysis relying on protein-specific data and atom centric substructural multilevel neighborhoods of atoms (MNA) descriptors of molecular fragments appeared to be suitable for predicting the pathogenic effect of single amino acid variants. MNA-based Naïve Bayes classifier algorithm, ClinVar and humsavar data were used for the creation of structure-activity relationships models for 10 proteins. The performance of the models was compared with 11 different predicting tools: eight individual (SIFT 4G, Polyphen2 HDIV, MutationAssessor, PROVEAN, FATHMM, MVP, LIST-S2, MutPred) and three consensus (M-CAP, MetaSVM, MetaLR). The accuracy of MNA-based method varies for the proteins (AUC: 0.631-0.993; MCC: 0.191-0.891). It was similar for both the results of comparisons with the other individual predictors and third-party protein-specific predictors. For several proteins (BRCA1, BRCA2, COL1A2, and RYR1), the performance of the MNA-based method was outstanding, capable of capturing the pathogenic effect of structural changes in amino acid substitutions. Supplementary data are available at Bioinformatics online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.