Abstract
Polydimethylsiloxane (PDMS) is commonly used as the coated polymer in the solid phase microextraction (SPME) technique. In this study, the partition coefficients of organic compounds between SPME/PDMS and the aqueous solution were compiled from the literature sources. The correlation analysis for partition coefficients was conducted to interpret the effect of their physicochemical properties and descriptors on the partitioning process. The PDMS-water partition coefficients were significantly correlated to the polarizability of organic compounds (r = 0.977, p < 0.05). An empirical model, consisting of the polarizability, the molecular connectivity index, and an indicator variable, was developed to appropriately predict the partition coefficients of 61 organic compounds for the training set. The predictive ability of the empirical model was demonstrated by using it on a test set of 26 chemicals not included in the training set. The empirical model, applying the straightforward calculated molecular descriptors, for estimating the PDMS-water partition coefficient will contribute to the practical applications of the SPME technique.
Highlights
Solid phase microextraction (SPME) is a solvent-free sample preparation technique
When SPME/PDMS is placed in the aqueous solution, the dipole moment of PDMS creates an electric field which polarizes the charges on organic molecules
The polarizability can be a good basis to understand the partition between SPME/PDMS and organic compounds in the aqueous solution
Summary
Solid phase microextraction (SPME) is a solvent-free sample preparation technique. The outer layer of the fused silica rod of the SPME device is coated with polymeric materials, such as polydimethylsiloxane. When the SPME device is placed in a sample matrix, the analyte is extracted and sorbed from the sample matrix onto the polymeric coating stationary phase. The analyte is desorbed from the SPME device and the concentrated extract is analyzed using an instrument such as a gas chromatograph. The SPME technique simplifies the four steps of sampling, extraction, condensation and introduction of the sample into the analytical instrument [1]. In comparison to the traditional solid phase extraction methods, the advantages of SPME are lower cost, easy handling and shorter time procedures. SPME has been widely used in the analysis of many organic compounds in water [2,3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.