Abstract

The partition coefficients of benzothiophene (BT) and benzothiophene 1,1-dioxide (BTDO) in the octane/acetonitrile system were predicted using the COSMO (conductor-like screening model) based activity coefficient models COSMO-SAC (segment activity coefficient) and COSMO-UNIQUAC. In COSMO-UNIQUAC, a segment activity coefficient was described in a UNIQUAC-type equation. The results with COSMO-UNIQUAC were compared with those from the COSMO-SAC model. It was found that COSMO-UNIQUAC reproduced the experimental data more accurately than COSMO-SAC. The surface charge density profiles (σ-profiles) of functional groups on BT and BTDO molecules were utilized to determine that the partition coefficients of BTDO are much lower than those of BT. A hypothetical molecule with the volume and surface area of BTDO was conducted by using the σ-profiles of functional groups on BT and BTDO. The partition coefficients of the hypothetical component were predicted by COSMO-UNIQUAC. It was revealed that the partitions of BTDO i...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.