Abstract

PurposeIn Parkinson’s disease (PD), 5–10% of cases are of genetic origin with mutations identified in several genes such as leucine-rich repeat kinase 2 (LRRK2) and glucocerebrosidase (GBA). We aim to predict these two gene mutations using hybrid machine learning systems (HMLS), via imaging and non-imaging data, with the long-term goal to predict conversion to active disease. MethodsWe studied 264 and 129 patients with known LRRK2 and GBA mutations status from PPMI database. Each dataset includes 513 features such as clinical features (CFs), conventional imaging features (CIFs) and radiomic features (RFs) extracted from DAT-SPECT images. Features, normalized by Z-score, were univariately analyzed for statistical significance by the t-test and chi-square test, adjusted by Benjamini-Hochberg correction. Multiple HMLSs, including 11 features extraction (FEA) or 10 features selection algorithms (FSA) linked with 21 classifiers were utilized. We also employed Ensemble Voting (EV) to classify the genes. ResultsFor prediction of LRRK2 mutation status, a number of HMLSs resulted in accuracies of 0.98 ± 0.02 and 1.00 in 5-fold cross-validation (80% out of total data points) and external testing (remaining 20%), respectively. For predicting GBA mutation status, multiple HMLSs resulted in high accuracies of 0.90 ± 0.08 and 0.96 in 5-fold cross-validation and external testing, respectively. We additionally showed that SPECT-based RFs added value to the specific prediction of of GBA mutation status. ConclusionWe demonstrated that combining medical information with SPECT-based imaging features, and optimal utilization of HMLS can produce excellent prediction of the mutations status in PD patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call