Abstract
The prediction of parking space availability plays a crucial role in information systems providing parking guidance. However, controversy persists regarding the efficiency and accuracy of mainstream time series prediction methods, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs). In this study, a comparison was made between a temporal convolutional network (TCN) based on CNNs and a long short-term memory (LSTM) network based on RNNs to determine an appropriate baseline for predicting parking space availability. Subsequently, a multi-head attention (MAT) mechanism was incorporated into an LSTM network, attempting to improve its accuracy. Experiments were conducted on three real and two synthetic datasets. The results indicated that the TCN achieved the fastest convergence, whereas the MAT-LSTM method provided the highest average accuracy, namely 0.0330 and 1.102 × 10−6, on the real and synthetic datasets, respectively. Furthermore, the improved MAT-LSTM model accomplished an increase of up to 48% in accuracy compared with the classic LSTM model. Consequently, we concluded that RNN-based networks are better suited for predicting long-time series. In particular, the MAT-LSTM method proposed in this study holds higher application value for predicting parking space availability with a higher accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.