Abstract

Quantitative structure–property relationship (QSPR) models were developed to predict degradation rate constants of ozone tropospheric and to study the degradation reactivity mechanism of 116 diverse compounds. DUPLEX algorithm was utilized to design the training and test sets. Seven molecular descriptors selected by the heuristic method (HM) were used as inputs to perform multiple linear regression (MLR), support vector machine (SVM) and projection pursuit regression (PPR) studies. The PPR model performs best both in the fitness and in the prediction capacity. For the test set, it gave a predictive correlation coefficient ( R) of 0.955, root mean square error (RMSE) of 1.041 and absolute average relative deviation (AARD, %) of 4.663, respectively. The results proved that PPR is a useful tool that can be used to solve the nonlinear problems in QSPR. In addition, methods used in this paper are simple, practical and effective for chemists to predict the ozone degradation rate constants of compounds in troposphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.