Abstract

A model to predict the bending modulus of elasticity (MOE) of oriented strand board (OSB) panels produced by batch processing is presented. The approach developed herein is unique in its comprehensiveness since the MOE is determined from information on the panel structure, temperature and moisture profiles and vertical density profiles obtained from the mat formation and compression models presented in Part 1. Comparison of predicted MOE values with those measured from 24 commercially produced panels shows good agreement considering some of the uncertainties involved. Simulations show that the MOE can be increased by any of the following changes: reduced fines content, increased panel density, better flake alignment in each of the three layers within a panel, increased flake length and a larger difference between the density of the face and core layers. The model was also used in a genetic algorithm to carry out an optimization study of batch OSB manufacturing. This analysis showed that by combining the appropriate reduction in the amount of flakes used, increase in fines content, improvement in flake alignment within each of the face and core layers and shortening of the batch time, a significant theoretical profit increase from the base case scenario can be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call