Abstract
This study presents an application using both single and multiple interval prediction models implemented with artificial neural networks to estimate the future production performance of oil wells. The single interval prediction model was developed using NOL (Gensym Corp., USA). The multiple neural network (MNN) model is a novel approach that combines a group of neural networks, with each component neural network being responsible for predicting a different time period. The approach is designed to improve the accuracy of long-term predictions. In addition to conducting both short and long term prediction of oil production, the study also investigates different approaches for modeling the application domain parameters. The MNN model for prediction of future well performance is applied to the time series data obtained from four pools of wells in the southwestern region of Saskatchewan, Canada. The results showed that a MNN model performed better than a single neural network model for long-term predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.