Abstract
The welding quality during welding body-in-white (BIW) determines the safety of automobiles. Due to the limitations of testing cost and cycle time, the prediction of welding quality has become an essential safety issue in the process of automobile production. Conventional prediction methods mainly consider the welding process parameters and ignore the material parameters, causing their results to be unrealistic. Upon identifying significant correlations between vehicle body materials, we utilize principal component analysis (PCA) to perform dimensionality reduction and extract the underlying principal components. Thereafter, we employ a greedy feature selection strategy to identify the most salient features. In this study, a welding quality prediction model integrating process parameters and material characteristics is proposed, following which the influence of material properties is analyzed. The model is verified based on actual production data, and the results show that the accuracy of the model is improved through integrating the production process characteristics and material characteristics. Moreover, the overfitting phenomenon can be effectively avoided in the prediction process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.