Abstract
Knowledge of the detailed organization of nucleosomes across genomes and the mechanisms of nucleosome positioning is critical for the understanding of gene regulation and expression. In the present work, the bias of 4-mer frequency in nucleosome and linker sequences of the S. cerevisiae genome was analyzed statistically. A novel position-correlation scoring function algorithm based on the bias of 4-mer frequency in linker sequences was presented to distinguish nucleosome vs linker sequences. Five-fold cross-validation demonstrated that the algorithm achieved a good performance with mean area under the receiver operator characteristics curve of 0.981. Next, the algorithm was used to predict nucleosome occupancy throughout the S. cerevisiae genome and relatively high correlation coefficients with experiment maps of nucleosome positioning were obtained. Besides, the distinct nucleosome depleted regions in the vicinity of regulatory sites were confirmed. The results suggest that intrinsic DNA sequence preferences in linker regions have a significant impact on the nucleosome occupancy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.