Abstract

This paper presents a small and efficient model for predicting NOx emissions from coal-fired boilers. The raw data collected are processed by the min–max scale method and converted into a multivariate time series. The overall model’s architecture is mainly based on building blocks consisting of separable convolutional neural networks and efficient channel attention (ECA) modules. The experimental results show that the model can learn good representations from sufficient data covering different operation conditions. These results also suggest that ECA modules can improve the model’s performance. The comparative study shows our model’s strong performance compared to other NOx prediction models. Then, we demonstrate the effectiveness of the model proposed in this paper in terms of predicting NOx emissions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.