Abstract

BackgroundSmall non-coding RNAs (21 to 24 nucleotides) regulate a number of developmental processes in plants and animals by silencing genes using multiple mechanisms. Among these, the most conserved classes are microRNAs (miRNAs) and small interfering RNAs (siRNAs), both of which are produced by RNase III-like enzymes called Dicers. Many plant miRNAs play critical roles in nutrient homeostasis, developmental processes, abiotic stress and pathogen responses. Currently, only 70 miRNA have been identified in soybean.MethodsWe utilized Illumina's SBS sequencing technology to generate high-quality small RNA (sRNA) data from four soybean (Glycine max) tissues, including root, seed, flower, and nodules, to expand the collection of currently known soybean miRNAs. We developed a bioinformatics pipeline using in-house scripts and publicly available structure prediction tools to differentiate the authentic mature miRNA sequences from other sRNAs and short RNA fragments represented in the public sequencing data.ResultsThe combined sequencing and bioinformatics analyses identified 129 miRNAs based on hairpin secondary structure features in the predicted precursors. Out of these, 42 miRNAs matched known miRNAs in soybean or other species, while 87 novel miRNAs were identified. We also predicted the putative target genes of all identified miRNAs with computational methods and verified the predicted cleavage sites in vivo for a subset of these targets using the 5' RACE method. Finally, we also studied the relationship between the abundance of miRNA and that of the respective target genes by comparison to Solexa cDNA sequencing data.ConclusionOur study significantly increased the number of miRNAs known to be expressed in soybean. The bioinformatics analysis provided insight on regulation patterns between the miRNAs and their predicted target genes expression. We also deposited the data in a soybean genome browser based on the UCSC Genome Browser architecture. Using the browser, we annotated the soybean data with miRNA sequences from four tissues and cDNA sequencing data. Overlaying these two datasets in the browser allows researchers to analyze the miRNA expression levels relative to that of the associated target genes. The browser can be accessed at http://digbio.missouri.edu/soybean_mirna/.

Highlights

  • Small non-coding RNAs (21 to 24 nucleotides) regulate a number of developmental processes in plants and animals by silencing genes using multiple mechanisms

  • We studied the relationship between the abundance of miRNA and that of the respective target genes by comparison to Solexa cDNA sequencing data

  • Our study significantly increased the number of miRNAs known to be expressed in soybean

Read more

Summary

Introduction

Small non-coding RNAs (21 to 24 nucleotides) regulate a number of developmental processes in plants and animals by silencing genes using multiple mechanisms. There are three important classes of endogenous small RNAs in plants, animal or fungi: micro RNAs (miRNAs), short interfering RNAs (siRNAs) and piwi-interacting RNAs (piRNAs). MicroRNAs (miRNAs) are small 18-24 nucleotide regulatory RNAs that play very important roles in posttranscriptional gene regulation by directing degradation of mRNAs or facilitating repression of targeted gene translation [4,5]. Helped by AGO1, single-strand mature miRNA will form a RNA-protein complex, named RNA-induced silencing complex (RISC), which negatively regulates gene expression by inhibiting gene translation or degrading mRNAs by perfect or nearperfect complement to target mRNAs [10,11]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.