Abstract

S-nitrosylation is one of the most prominent posttranslational modification among proteins. It involves the addition of nitrogen oxide group to cysteine thiols forming S-nitrosocysteine. Evidence suggests that S-nitrosylation plays a foremost role in numerous human diseases and disorders. The incorporation of techniques for robust identification of S-nitrosylated proteins is highly anticipated in biological research and drug discovery. The proposed system endeavors a novel strategy based on a statistical and computational intelligent methods for the identification of S-nitrosocystiene sites within a given primary protein sequence. For this purpose, 5-step rule was approached comprising of benchmark dataset creation, mathematical modelling, prediction, evaluation and web-server development. For position relative feature extraction, statistical moments were used and a multilayer neural network was trained adapting Gradient Descent and Adaptive Learning algorithms. The results were comparatively analyzed with existing techniques using benchmark datasets. It is inferred through conclusive experimentation that the proposed scheme is very propitious, accurate and exceptionally effective for the prediction of S-nitrosocystiene in protein sequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.