Abstract

This article studies tubular hydroforming of high strength low alloy (HSLA) and dual phase (DP600) straight tubes under the action of end feeding loads. Experiments demonstrate that higher end feed loads enhance the formability of the tubes and increase the internal fluid pressure for onset of necking and bursting. Because of the action of the internal pressure and the axial compressive load, the onset of localization (necking) is due to a complex three-dimensional state of stress. Using free expansion experiments, approximate upper and lower bound strain-based forming limit curves are determined for the tube materials. These limit curves, in turn, are used to derive upper and lower bound extended stress-based forming limit curves [Simha et al., Prediction of necking in tubular hydroforming using an extended stress-based FLC. Transactions of the ASME Journal of Engineering Materials and Technology 2007;129(1): 36–47]. In conjunction with finite element computations that use solid elements to model the tube, these stress-based limit curves are used to predict upper and lower bound necking pressures under the action of end feed loading. These predictions of necking pressures, when an appropriate coefficient of tube-die friction is used, are found to bracket the experimentally measured necking pressures. Computations using plane stress shell elements to model the tubes are shown to give erroneous results, since the plane stress approximation is not valid when tubes are hydroformed in a die.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.