Abstract

This study investigated the use of vibrational spectroscopy [near infrared (NIR), Fourier-transform mid-infrared (FT-MIR), Raman] and multivariate data analysis for (1) quantifying total trans fatty acids (TT), and (2) separately predicting naturally-occurring (NT; i.e., C16:1 t9; C18:1 trans-n, n = 6 … 9, 10, 11; C18:2 trans) and industrially-induced trans fatty acids (IT = TT – NT) in Irish dairy products, i.e., butter (n = 60), Cheddar cheese (n = 44), and dairy spreads (n = 54). Partial least squares regression models for predicting NT, IT and TT in each type of dairy product were developed using FT-MIR, NIR and Raman spectral data. Models based on NIR, FT-MIR and Raman spectra were used for the prediction of NT and TT content in butter; best prediction performance achieved a coefficient of determination in validation (R2V) ∼ 0.91–0.95, root mean square error of prediction (RMSEP) ∼ 0.07–0.30 for NT; R2V ∼ 0.92–0.95, RMSEP ∼ 0.23–0.29 for TT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.