Abstract
During the treatment or transport of natural gas, the presence of water, even in very small quantities, can trigger hydrates formation that causes plugging of gas lines and cryogenic exchangers and even irreversible damages to expansion valves, turbo expanders and other key equipment. Hence, the need for a timely control and monitoring of gas hydrate formation conditions is crucial.This work presents a two-legged approach that combines thermodynamics and artificial neural network modeling to enhance the accuracy with which hydrates formation conditions are predicted particularly for gas mixture systems. For the latter, Van der Waals-Platteeuw thermodynamic model proves very inaccurate. To improve the accuracy of its predictions, an additional corrective term has been approximated using a trained network of artificial neurons. The validation of this approach using a database of 4660 data points shows a significant decrease in the overall relative error on the pressure from around 23.75%–3.15%. The approach can be extended for more complicated systems and for the prediction of other thermodynamics properties related to the formation of hydrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.