Abstract

Liquid permeability of the mushy zone is important for porosity formation during the solidification process. In order to investigate the permeability of the mushy zone, an integrated model was developed by combining the phase field model and computational fluid dynamics (CFD) model. The three-dimensional multigrain dendrite morphology was obtained by using the phase field model. Subsequently, the computer-aided design (CAD) geometry and mesh were generated based on calculated dendrite morphologies. Finally, the permeability of the dendritic mushy zone was obtained by solving the Navier-Stokes and continuity equations in ANSYS Fluent software. As an example, the dendritic mushy zone permeability of Al-4.5wt%Cu alloy and its relationship with the solid fractions were studied in detail. The predicted permeability data can be input to the solidification model on a greater length scale for macro segregation and porosity simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.