Abstract

This study is based on the determination of muon beam energies using multiple Coulomb scattering data in artificial neural networks. Muon particles were scattered off a 50-layer lead object by using the G4beamline simulation program which is based on Geant4. Before working with deep neural networks, average scattering angle distributions in terms of the number of crossed layers were analyzed with the fitting method using the well-known formula for multiple Coulomb scattering to estimate muon beam energies. Subsequently, average scattering angles over the number of crossed layers from 1 to 10 were used in deep neural network structures to estimate the muon beam energy. It has been observed that deep neural networks significantly improve the resolutions compared to the ones obtained with the fitting method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.