Abstract

Measurements of the complex impulse response of 900 MHz radio channels in mountainous terrain in British Columbia, Canada, are used to quantify values for the normalized scattering cross section /spl sigma//sup 0/ for mountains covered with evergreen trees. The bistatic radar equation is then used in a propagation model to predict characteristics of the impulse response in similar terrain from topographical data. Three-dimensional (3-D) propagation models for mountainous areas are important, because such areas stress to the limit the multipath handling capabilities of most air interfaces. /spl sigma//sup 0/ is related to a more fundamental characteristic /spl gamma/ of the surface via Lambert's law. The measured value of /spl gamma/ is -21.1 /spl plusmn/2.9 dB, which is similar to some of the very few other values found in the literature. Using this value of /spl gamma/, the predicted multipath delay profiles correspond well with measurements. The results can be used to predict complex impulse responses in mountainous terrain which may be convolved with a simulated data stream to predict error rate, outage or other aspects of wireless system performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.