Abstract

This paper presents a multidimensional computational method to predict the spatial variation data inside and across multiple dies of a wafer. This technique is based on tensor computation. A tensor is a high-dimensional generalization of a matrix or a vector. By exploiting the hidden low-rank property of a high-dimensional data array, the large amount of unknown variation testing data may be predicted from a few random measurement samples. The tensor rank, which decides the complexity of a tensor representation, is decided by an available variational Bayesian approach. Our approach is validated by a practical chip testing data set, and it can be easily generalized to characterize the process variations of multiple wafers. Our approach is more efficient than the previous virtual probe techniques in terms of memory and computational cost when handling high-dimensional chip testing data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.