Abstract

Abstract Accurate models of water withdrawal are crucial in anticipating the potential water use impacts of drought and climate change. Machine learning methods can simulate the complex, nonlinear relationship between water use and potential explanatory factors, but rarely incorporate the hierarchical nature of water use data. This work presents a novel approach for the prediction of water withdrawals across multiple usage sectors using an ensemble of models fit at different hierarchical levels. Models were fit at the facility and sectoral grouping levels, as well as across facility clusters defined by temporal water use characteristics. Using repeated holdout cross-validation and a dataset of over 300,000 observations of monthly water withdrawal across 1,509 facilities, it demonstrates that ensemble predictions led to statistically significant improvements in predictive performance in five of the eight sectors analyzed. The use of ensemble modeling resulted in lower predictive errors compared to facility models in 65% of facilities analyzed. The relative improvement gained by ensemble modeling was greatest for facilities with fewer observations and higher variance, indicating its potential value in predicting withdrawal for facilities with relatively short data records or data quality issues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.