Abstract

Drought is a common and greatly influential natural disaster, yet its reliable estimation and prediction remain a challenge. The object of this paper is to investigate the spatiotemporal evolution of drought in the Yangtze River basin. The multi-time scale drought characteristics were analyzed based on 19 models and 3 emission scenarios of CMIP6. The results show that the CMIP6 model generally has moisture deviation in the Yangtze River basin, but the accuracy has been improved after correction and ensemble. The drought conditions in the near future (2030–2059) of the Yangtze River basin will be more severe than those in the historical period (1981–2010), with the drought intensity increasing by 7.47%, 18.24%, 18.34%, and 41.48% in the order of 1-month, 3-month, 6-month, and 12-month scales, but it will be alleviated in the far future (2070–2099) to 5.97%, 11.86%, −4.09%, and −8.97% of the historical period, respectively. The 1-month scale drought events are few, and the spatial heterogeneity is strong under different scenarios; areas of high frequency of the 3-month, 6-month, and 12-month scale drought events shift from the upper and middle reaches, middle and lower reaches in the historical period to the southwestern part of the entire basin in the future, and the harm of drought in these regions is also higher. The Yangtze River basin will get wetter, and the variability will increase in the future. The larger the time scale is, the more intense the change will be, with the 12-month scale varying about three times as much as the 1-month scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call