Abstract

Industry is constantly seeking ways to avoid corrective maintenance so as to reduce costs. Performing regular scheduled maintenance can help to mitigate this problem, but not necessarily in the most efficient way. In the context of condition-based maintenance, the main contributions of this work were to propose a methodology to treat and transform the collected data from a vibration system that simulated a motor and to build a dataset to train and test an Artificial Neural Network capable of predicting the future condition of the equipment, pointing out when a failure can happen. To achieve this goal, a device model was built to simulate typical motor vibrations, consisting of a computer cooler fan and several magnets. Measurements were made using an accelerometer, and the data were collected and processed to produce a structured dataset. The neural network training with this dataset converged quickly and stably, while the tests performed, k-fold cross-validation and model generalization, presented excellent performance. The same tests were performed with other machine learning techniques, to demonstrate the effectiveness of neural networks mainly in their generalizability. The results of the work confirm that it is possible to use neural networks to perform predictive tasks in relation to the conditions of industrial equipment. This is an important area of study that helps to support the growth of smart industries.

Highlights

  • The control, monitoring and maintenance of production line equipment are fundamental activities for the quality and performance of the productive process [1,2,3,4]

  • It can be seen from this figure that the error value tends asymptotically to 0 quickly and the error no longer varies after few training epochs

  • The prediction model was tested with the test dataset and the values predicted and estimated are compared with the performance index [15]

Read more

Summary

Introduction

The control, monitoring and maintenance of production line equipment are fundamental activities for the quality and performance of the productive process [1,2,3,4]. Sensors and actuators play an important role in the operation of various machines such as conveyor belts, generators, mixers, compressors, furnaces, welding machines, among others, so they must always be in proper working condition. To guarantee this, these machines are constantly monitored and two types of maintenance of their components, corrective and the scheduled, are performed. Scheduled maintenance is less disruptive, both types have associated costs due to loss of production. To avoid these two Sensors 2019, 19, 4342; doi:10.3390/s19194342 www.mdpi.com/journal/sensors

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.