Abstract

Moisture content is an imperative indicator of biofuel lipid content in microalgae. This paper developed a reliable, computationally cost-effective combination of artificial neurons and an optimization tool for moisture content concentration prediction using computational intelligence. A total of 83 data of microalgae var. Chlorella vulgaris moisture content parameter factors were utilized. Using feed-forward, recurrent, and deep neural networks as prediction models, their MSE and R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> values were analyzed. Genetic programming GPTIPSv2, a multigene symbolic regression genetic programming (MSRGP) tool, was used to create objective functions of the ANNs. This convergence function was the main element in developing a genetic algorithm (GA)-optimized recurrent neural network model considered to suggest the optimal quantity of neurons in each of the hidden layers in neural network architecture. The feed-forward artificial neural network with 22 neurons in its layer was recommended using the Levenberg-Marquardt training tool. The MSE (5.27e <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">−6</sup> ) and R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> (0.9999) results of this model surpassed the other neural networks models. Hence, it implies that the developed optimized Levenberg-Marquardt-based feed-forward neural network is an effective moisture content predictor as it provided highly accurate and sensitive results at a low cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call