Abstract

This paper presents an approach for determination of the best cutting parameters leading to minimum surface roughness in end milling mold surfaces of an ortez part used in biomedical applications by coupling neural network and genetic algorithm. In doing this, design of experiments, neural network and genetic optimization technique are utilized in integrated purpose. A series of cutting experiments for mold surfaces in one component of ortez part are conducted to obtain surface roughness values. A feed forward neural network model is developed exploiting experimental measurements from the surfaces in the mold cavity. The neural network model is trained and tested in MATLAB. Genetic algorithm coupled with neural network is employed to find optimum cutting parameters leading to minimum surface roughness without any constraint. For this purpose, a simulation model for the component of ortez part was created to determine the critical regions to be used in roughness measurements and to produce a plastic product. Additional measurements were performed to validate optimum values and their corresponding to roughness value predicted by genetic algorithm with the values obtained from experiments in the mold cavity and on plastic product. From this, it is clearly seen that a good agreement is observed between the predicted values and experimental measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.