Abstract

The accurate identification of microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) is of great clinical importance. To develop a radiomics nomogram based on susceptibility-weighted imaging (SWI) and T2-weighted imaging (T2WI) for predicting MVI in early-stage (Barcelona Clinic Liver Cancer stages 0 and A) HCC patients. A prospective cohort of 189 participants with HCC was included for model training and testing, and an additional 34 participants were enrolled for external validation. ITK-SNAP was used to manually segment the tumour, and PyRadiomics was used to extract radiomic features from the SWI and T2W images. Variance filtering, student's t test, least absolute shrinkage and selection operator regression and random forest (RF) were applied to select meaningful features. Four machine learning classifiers, including K-nearest neighbour, RF, logistic regression and support vector machine-based models, were established. Independent clinical and radiological risk factors were also determined to establish a clinical model. The best radiomics and clinical models were further evaluated in the validation set. In addition, a nomogram was constructed from the radiomic model and independent clinical factors. Diagnostic efficacy was evaluated by receiver operating characteristic curve analysis with fivefold cross-validation. AFP levels greater than 400ng/mL [odds ratio (OR) 2.50; 95% confidence interval (CI) 1.239-5.047], tumour diameter greater than 5cm (OR 2.39; 95% CI 1.178-4.839), and absence of pseudocapsule (OR 2.053; 95% CI 1.007-4.202) were found to be independent risk factors for MVI. The areas under the curve (AUCs) of the best radiomic model were 1.000 and 0.882 in the training and testing cohorts, respectively, while those of the clinical model were 0.688 and 0.6691. In the validation set, the radiomic model achieved better diagnostic performance (AUC = 0.888) than the clinical model (AUC = 0.602). The combination of clinical factors and the radiomic model yielded a nomogram with the best diagnostic performance (AUC = 0.948). SWI and T2WI-derived radiomic features are valuable for noninvasively and accurately identifying MVI in early-stage HCC. Furthermore, the integration of radiomics and clinical factors yielded a predictive nomogram with satisfactory diagnostic performance and potential clinical benefits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.