Abstract

In this work, a data-driven reduced-order model is presented to predict the microscale spatial distribution of the plastic strain rate tensor in an isotropic two-phase composite subjected to an arbitrary macroscopically imposed strain rate tensor. This model was built using the framework of localization linkages called Material Knowledge Systems (MKS), which has been demonstrated to exhibit a remarkable combination of accuracy and low computational cost. In prior work, the MKS framework was successfully used to predict the local strain rate fields in multiphase composites subjected to a selected macroscale strain rate tensor. In this work, the MKS framework is extended to include the complete set of all macroscale strain rate tensors that could be applied. This is accomplished by developing novel representations that allow a parametrization of the localization kernel over the complete space of unit symmetric traceless second-rank tensors and implementing them with the required fast computational strategies. The MKS localization linkage produced in this work was calibrated and validated to results from microscale finite element models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.