Abstract
In this study, methyl orange (MO) dye removal by adsorption utilizing activated carbon made from date seeds (DPAC) was modeled using an artificial neural network (ANN) technique. Instrumental investigations such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) analysis were used to assess the physicochemical parameters of adsorbent. By changing operational parameters including adsorbent dosage (0.01–0.03 g), solution pH 3–8, initial dye concentration (5–20 mg/L), and contact time (2–60 min), the viability of date seeds for the adsorptive removal of methyl orange dye from aqueous solution was assessed in a batch procedure. The system followed the pseudo 2nd order kinetic model for DPAC adsorbent, according to the kinetic study (R2 = 0.9973). The mean square error (MSE), relative root mean square error (RRMSE), root mean square error (RMSE), mean absolute percentage error (MAPE), relative error (RE), and correlation coefficient (R2) were used to measure the ANN model performance. The maximum RE was 8.24% for the ANN model. Two isotherm models, Langmuir and Freundlich, were studied to fit the equilibrium data. Compared with the Freundlich isotherm model (R2 = 0.72), the Langmuir model functioned better as an adsorption isotherm with R2 of 0.9902.Thus, this study demonstrates that the dye removal process can be predicted using an ANN technique, and it also suggests that adsorption onto DPAC may be employed as a main treatment for dye removal from wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.