Abstract

Development of a direct methanol fuel cell (DMFC) mass flux model, using conventional transport theory, is presented and used to predict the fluid phase superficial velocity, methanol and water molar fluxes, and the chemical species (methanol and water) dimensionless concentration profiles in the polymer electrolyte membrane, Nafion ® 117, of a DMFC. Implementation of these equations is illustrated to generate the numerical data as functions of the variables such as the pressure difference across the membrane, methanol concentration at the cell anode, temperature, and position in the membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.