Abstract
AbstractA computational fluid dynamics (CFD) model of a pilot‐scale waste‐glass melter was used to generate input data for several different machine‐learning models to predict the cold‐cap coverage from plenum temperatures. This methodology could serve as useful to provide nonvisual feedback for operational control. The machine‐learning models tested include an artificial neural network (ANN), a convolutional neural network (CNN), a random forest (RF) algorithm, and a support vector machine (SVM) method. CFD simulations with randomized cold‐cap coverage were run to generate plenum‐temperature distributions. The topology of the cold cap was predicted with each method using an input layer of selected temperature locations. The ANN was used to predict the cold‐cap coverage percentage with an accuracy of 1.2%. The accuracy of the various machine‐learning algorithms was dependent on the filter resolution employed. When using a low resolution (16‐cm filter), the CNN and ANN methods produced the best accuracy, with errors of 6.98% and 6.58%, respectively. At finer levels of resolution (4‐cm filter), the RF method produced the best accuracy, with an error of 8.12%. The ANN and SVM methods required less computational time to train than either the CNN or RF methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Ceramic Engineering & Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.